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Introduction

Modern electronics relies on silicon, whose semiconducting
properties are explained by its band structure. This struc-
ture describes how an electron’s energy varies with its crystal
momentum ℏk. The size and nature of the band gap deter-
mine whether silicon behaves as a metal, semiconductor, or
insulator.
In this project we numerically solve the Schrödinger equa-
tion in a plane-wave basis to compute the band structure of
silicon and compare it with experimental data.
To obtain the band structure we solve the Schrödinger equa-
tion for electrons in the periodic potential of the silicon lat-
tice. In a periodic potential, Bloch’s theorem states that
electron states can be written as plane waves labelled by a
wavevector k. Since the crystal potential V (r) is periodic,
this allows us to express the wavefunction as

ψk(r) =
∑
G

aG(k) exp(i(k+G) · r)

Here, G represents the reciprocal lattice vectors of the crys-
tal. Substituting this into the Schrödinger equation and
integrating over the unit cell transforms it into a matrix
eigenvalue problem.
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G and G′ here represent the reciprocal lattice vectors of sil-
icon. Silicon has a face-centred cubic (FCC) Bravais lattice.
Its reciprocal lattice vectors can be written as

G =
2π

a
(h, k, l)

where (h, k, l) are integers with the same parity, either all
even or all odd. The potential VG is then defined:

VG−G′ = S
(
G−G′) · V (∣∣G−G′∣∣) (2)

S(G) = cos
[π
4
(h+ k + l)

]
where V (|G|), the form factor, is an empirically defined
function, describing the Fourier components of the potential,
as a function of |G|2.

Figure 1: Calculated band structure. The path L − Γ-X-K-Γ
connects standard high-symmetry points in k space.

Methods

Equation (1) was numerically implemented using a plane-
wave basis truncated to 51 reciprocal lattice vectors, corre-
sponding to |G|2 ≤ 11. This cut-off offered a good balance
between computational cost and accuracy. The lattice con-
stant was set to a = 5.43 Å. The Fourier coefficients (in eV)
from [3] used were:

V3 = −3.04768, V8 = 0.74831, V11 = 0.97961.

Matrix elements without a corresponding V value were set to
zero, resulting in a sparse matrix. Matrices were constructed
for each k-point along the high-symmetry path Γ−X−W−L−
Γ−K within the first Brillouin zone of the face-centred-cubic
lattice.
Initially, to verify the algorithm’s correctness, a free elec-
tron simulation was performed where all Vi = 0. This
yielded Γ-point energies of 0 eV, 15.3 eV, and 20.4 eV, which
correspond correctly to Gs of (0, 0, 0), (±1,±1,±1), and
(±2, 0, 0).
Eigenvalues were obtained by diagonalising the resulting
Hermitian matrix using numpy’s linalg.eigvalsh, and this
procedure was repeated over 800 k-points to achieve a
smooth energy dispersion curve.
Similarly, energy levels were sampled in the Brillouin zone
unit cell at a resolution of 64× 64× 64 to create Figure 2.

Figure 2: Cross-sections of the first eight energy bands across
the Brillouin zone, showing the variation of energy with k.

Results

Eigenvalues were computed at 800 k-points along the high-
symmetry paths of the Brillouin zone. From this, an indirect
band gap of 1.15 eV was obtained, which falls within the ex-
perimental range of 1.11–1.17 eV for temperatures between
0 and 300 K [2]. The valence band maximum is located at Γ,
while the conduction band minimum lies on the Γ–X line.
The resulting band structure is shown in Figure 1 and ex-
hibits good qualitative agreement with the plot from [1].
Figure 2 presents a cross section of the first eight energy
levels throughout the Brillouin zone.

Further Work

Our current method enables a more detailed charac-
terisation of silicon. Specifically, we can also determine
effective masses for electrons through parabolic fits near
the band extrema, and compare these results with ex-
perimental data. Similarly, we can extend our study to
germanium or gallium arsenide too.
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